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Introduction

The human brain is perhaps the most complex structure known to man, and because 

it defines our existence it only makes sense that we should strive to understand it. 

The benefits would seem obvious -- if we could only figure out how people think 

then we could build artificial systems to mimic our behavior, while maintaining com-

plete control. Understanding human decision making has traditionally followed this 

paradigm, pursuing an ultimate enlightenment whereby “human” decisions can be 

made by automated systems, thereby saving manpower, costs, and all the other 

“problems” associated with humans. However,  this ‘utopia’ is a fantasy that we will 

never reach, nor should we continue trying. It is my belief that automated systems are 

tremendously important to our society, but only to the degree that they should be 

our assistants, not our replacements. Taking the human out of the equation is a near-

ly impossible task, and one that would leave us at the hapless mercy of our creations 

should we succeed. In this paper I will critique the traditional Bayesian, heuristic, and 

regression models of behavior, and suggest new paradigms that get to the heart of 

what it means to understand human decision making.

Some traditional behavioral models evolved out of the idea that humans, being intel-

ligent creatures who pursue what’s in their best interest, will always strive for what 

we believe will give us the greatest benefit. Expected utility theory operates with the 

notion that we survey our options and choose the one that maximizes utility. Math-

ematical models (Bernoulli, 1954) have been drawn up to assess this and predict how 

people should respond. In other cases, Bayesian networks (Morawski, 1989) attempt 

to use the notion of probability theory to underlie what people believe. Similarly, heu-

ristic approaches attempt to model ways in which humans typically behave under cer-

tain conditions, such as the gambler’s fallacy (Schulman, 2002) and base rate neglect 

(Kahneman, Slovic, & Tversky, 1982). Mathematical regression models take the idea 

of weights into account (Dawes, 1979) but still fail on many accounts to thoroughly 

understand decision making.



Bayesian Networks

Bayesian networks rely on probabilities of factors to determine the “best” decision. 

A simple example might go like this: you know that the chances of having a certain 

disease are about 50% in a given population. There is a test which is 80% accurate 

when it gives a positive or negative response. Given that the test comes out positive, 

you can infer that you have an 80% chance of actually having the disease. But what 

if the chances of someone in the population having the disease are only 2%? Given a 

positive result from the same test which is 80% accurate, the actual probability that 

you have the disease is now still only 7.5%. While these methods might be a great 

way to quantify some partially ambiguous situations, they are very limited in their 

scope and cannot be expected to account for human behavior in real world situa-

tions. While these models do not represent the latest in related research, they share 

the basic foundations and goals, namely that continuing theoretical iterations will 

produce some definitive theory.

First, knowing the prior probabilities is often not a realistic scenario. While betting on 

sports games is rarely done without prior odds, practical situations often do not have 

this luxury. Furthermore, even knowing the probabilities leads you to question the 

source; Bayesian networks make the assumption that not only do you have access to 

the prior probabilities, but that those probabilities are completely accurate and unbi-

ased. But even if we can assume that we know the prior probabilities and that these 

probabilities are unbiased, Bayesian networks also assume that there are no other 

constraints acting on the system, and if there are, that these constraints be clearly 

defined. For instance, back to our disease example; in addition to the 2% prior prob-

ability of having the disease, and the 80% accuracy of the test, what if we assume 

that the disease is susceptible to a certain protein found in beef? In order to use a 

Bayesian Belief Network to calculate the probability of having the disease, you would 

need to know how much beef one had consumed in whatever time frame relevant to 

the vulnerability of the disease. Of course this is only one example but it illustrates the 

point that you cannot account for all the variability that is likely to have an effect on 

believability as it applies to the human decision maker. Not only are there too many 

factors (or potential factors) to account for, but the world and the people in it are in 

a state of constant change, and no (relatively) static model can be expected to con-

stantly maintain an accurate representation.

As a result, Bayesian networks can be useful in some situations to understand some 

simple dynamics or to get a feel for trends. Often when first learning a new environ-

ment, it’s helpful to know some general trend information. For instance a new car 



salesman might be taught to go easy on potential car buyers late in the day, because 

most of them are tired from the day’s work and less likely to engage in negotiations. 

Obviously, it is easy to understand why you wouldn’t want to make a steady rule 

about negotiating tactics based solely on time of day. The reality is that real world 

situations don’t follow all the rules of formal modeling, (no matter how many vari-

ables) and should not be sought after as replacements for human agents.

Heuristic Models

Heuristic approaches to decision modeling are slightly more appealing in terms of 

their methods. Scientists such as Kahneman and Tversky have proposed sets of 

heuristics which attempt to explain human decision patterns on various situations. 

While the crux of this methodology is correct in how it identifies the trends, it fails to 

capture true motivations for observed actions. Referring to them as instances of the 

sample size or base rate neglect phenomenon are trivializations and often arise from 

lab experiments with little applicability in real world situations. A typical example 

might look like this: Suppose there are two coins on a table, and each coin is flipped 

6 times. The results are as follows:

coin 1:  H, T, H, T, T, H  coin 2:  T, T, T, T, T, T

Statistically, the probabilities of each set occurring are the same, namely 1.6%. This 

trend would probably be considered an instance of a ‘misperception of a random 

sequence.’ While it might be true that most people would fail this test, the test is 

misleading. People’s natural ideas of randomness tend to focus on random products, 

rather than random sets of products (Nickerson, 2002). In other words, people can 

recognize that the chances of getting the exact sequence of head and tails as rep-

resented by coin 1 and coin 2 above are the same, however randomness is typically 

defined not by the product itself, but on the set of products. In that case, using a 

random sampling we would expect (even with a small sample size of 6) that there 

would be about 3 heads and 3 tails. Even if we allow some flexibility, knowing that 

small sample sizes often do not represent the mean of larger sample sizes, getting 6 

tails in a row would seem unlikely, and not random.

Examples like this are trivializations in that they do not accurately represent the com-

plexity of the world. In the coin example, perhaps there is no further complexity to 

consider, however the utility of such methods to figure out the probability of getting 

one coin sequence over another are lost in the simplicity of the task -- it would take 

too long to calculate to be useful. The mistake made by many theorists is in assuming 

that trends observed in fictional coin experiments are relatable to real world complex-



ities. I believe this is a major problem with many laboratory experiments (as opposed 

to naturalistic (Hutchins, 1995) or staged world studies (Woods, 1993).

These rule-based explanations of behavior are typically very good at describing the 

trends that emerge as people are asked to judge the likeliness of flipping heads and 

tails, of boys and girls being born in a certain order, or of a certain personality de-

scription as being reflective of a lawyer or engineer (Edwards & von Winkerfeldt, 

2000). The problem with these studies is that they lack a true value in situations 

where such decisions are important. To take these experiments and findings directly 

into the real world is akin to asking FDR to decide whether to prepare Pearl Harbor 

for an attack based solely on the occurrences of previous attacks. This example may 

seem extreme, but it underlies the notion that when we have choices to make, there 

are always other factors to help us make this decision. This is true especially when 

the stakes are highest. High stakes situations force us to be more cautious in our 

decisions since the consequences for being wrong are too great to bear. But even in 

mild situations such as deciding which route to take to the movie theatre are likely 

to employ as many information channels as readily available. For instance, you might 

take into consideration construction and traffic patterns, but you probably wouldn’t 

take the time to determine the real-time average speed of traffic on each route and 

then choose the quickest.

Another factor that is often extremely significant in decision making that cannot be 

accurately accounted for in heuristic modeling is that of time. Clearly, the impact of 

the notion of time is a very subjective one across people, and the concept of having 

“enough time” vs. “too little time” will vary wildly from person to person and even 

with the same person from situation to situation. Thus, modeling time constraints as 

a function of heuristic practices is difficult. However, time is constantly playing a role 

in the decisions we make. While it’s true that many decisions are relatively time-in-

dependent, such as which type of detergent to use, most decisions must be made in 

the context of some situation that will not last indefinitely. Many times, the severity 

of the particular situation is directly tied to time. Intuitively, we can appreciate that 

people will make different choices given the same scenario if the time constraints 

are severely distorted. Some would argue that this defines an area where automated 

mechanisms, employing some heuristic method of decision analysis, could make a 

‘better’ decision in a short amount of time. Because automated systems can evaluate 

parameters faster than humans in most situations, they could make an informed deci-

sion while considering tens or even hundreds of factors when a human might take 

an exponentially longer time to make the same decision of told to consider the same 

factors.



The problem with this evaluation is that it trivializes the difficulty of defining these 

factors explicitly and exhaustively. Additionally, the world is not static, so even if we 

could define all the appropriate factors to make a decision in a certain context, the 

scenario could change completely. Take for instance a military advance on an en-

trenchment of enemy troops. Suppose all available evidence tells us the enemy is a 

company of 150, holding their position. Our forces of 500 would likely continue to 

advance and attempt to take their position. But what if we spy a 1200-man battal-

ion lying just beyond the company? Now our goals have changed from taking their 

position to retreating unnoticed to wait for additional troops. Being bound or merely 

prompted by the tenets of some automated system would likely lead to a false sense 

of security because we tend to believe that the automated system’s suggestions or 

actions are correct; even in the face of reliable contradictory information (Skitka et 

al., 1999; Rasmussen 1986; Vicente & Rasmussen 1992). Because new evidence may 

come in any form and with myriad repercussions, it is impossible to model all scenari-

os that might have a significant impact on decision making.

Regression Models

Models of regression have also been used in attempts to model human decision 

making behavior. These models employ a number of weights attributed to certain 

identified factors that place an importance on those weights. For instance, in decid-

ing which graduate students should be admitted to a program, it might be deter-

mined (through extensive analysis of prior records) that GPA is a far weaker indicator 

of eventual success than is the combined effects of years removed from college and 

years of industry work. While the ability to weight different factors is important, it is 

not sufficient to account for the complexities of real world decisions. Additionally, it 

does not solve the problem of quantifying variables which are inherently unquantifi-

able. Robin Dawes makes the distinction that in the process of admitting graduate 

students, the goal is to find candidates by predicting some variable termed “self ac-

tualization.” Dawes acknowledges that this term is not easily quantifiable, but makes 

the assumption that this variable (which has yet to be defined) is positively related 

to “intelligence, to past accomplishments, and to ability to snow one’s colleagues. 

In our applicant’s files, GRE scores assess the first variable, undergraduate GPA, the 

second, and letters of recommendation, the third” (Dawes, 1979). I think one would 

have a difficult time arguing that GRE scores are unilaterally indicative of intelligence, 

or that undergraduate GPA is the only past accomplishment relevant to graduate 

applicants, or even that letters of recommendation represent a consensus opinion. 

However, even if those held true; you cannot explain justifications for a novel term 

with no definition. The fact that the regression model derived from the convenient 



use of these three indicators can choose for admission applicants who maximize 

these criteria should come as no surprise. That this method is automatically thought 

to indicate a high level of self actualization is absurd. Omitting variables such as prior 

work experience, research interests, past colleagues, heritage, faculty research proj-

ects, etc. would be a foolish way to pick a graduate student, and I’m sure all graduate 

committees use more than 3 steadfast, simple criteria to determine admissions for the 

majority of applicants; allowing of course for those students who fall far above and 

far below some generally-accepted ranges. 

The problem of knowing what to look at is a very important issue here, and one that 

regression models cannot effectively take into account (Dawes, 1979). The notion 

however that experts are good at quantifying these variables, just not integrating 

them is still subject to the variability of applicants in all categories from year to year, 

not to mention new categories that may spring up or old categories that might be 

outmoded. One ought to ask if the process of creating these linear models year in 

and year out is worth the convenience of not having to hand-pick graduate students. 

Is this really lessening the work or just changing it?

Alternate Paradigms

The concept of making decisions is a uniquely human one. Decisions represent junc-

tions at which one course of action is taken over another (or more than one), even 

if the other courses of action are not explicitly defined. The ability to recognize novel 

action paths and to re-interpret data in light of new information is crucial for oper-

ating in real-world environments. Therefore, eliminating the human agent from the 

decision equation is almost impossible. Three main themes which I believe underscore 

this idea are: 1: humans have goals, not machines; 2: humans are context-sensitive 

while machines are literal-minded; and 3: new technology only changes requisite 

expertise, it does not eliminate it.

The first theme highlights the idea that humans are goal-driven. Every thing we do 

is driven by multiple goals (Chow et al., 2000). These goals continuously interact at 

varying levels to direct the thrust of our behavior. For example, assume your ‘goal’ 

is to go buy milk at the store. While this may be your most important goal, to come 

home with milk, there are subgoals such as not getting in an accident while driving, 

not getting caught in excessive traffic, not paying more than about $2 for the milk, 

etc. While these goals may usually lie dormant in that you don’t think about them 

explicitly, they are nonetheless important. If you should get a phone call that your 

mother has gone into the hospital, all of a sudden getting the milk probably isn’t your 

biggest priority.



Automated systems do not have goals. Machines do not strive to achieve some 

level of satisfaction or accomplishment. They are designed by humans to help us in 

reaching our goals. There’s little doubt Neil Armstrong wouldn’t have uttered those 

famous words without the aid of technology and computer systems. But we would 

never consider the computers as desiring to reach the cosmos. This notion however 

is surprisingly prevalent in our society. Consumers, designers, and engineers alike talk 

about what machines “do” as if they have a mind of their own. Automated systems 

are so complex that they have a perceived animacy which makes us think they have 

human qualities (Sarter & Woods, 1994). One of those personifications is believ-

ing that machines carry their own goals -- independent from human goals. Because 

these systems to not have their own goals and self-serving ambitions, they will never 

be suitable replacements for humans, who will always have them.

The second theme identifies the nature of the computer-human relationship. Al-

though some Artificial Intelligence scientists might disagree, there is a fundamental 

contrast between humans and machines. Namely, humans are context-sensitive 

beings while machines are literal minded (Weiner, 1950). This dichotomy, dubbed 

Norbert’s Contrast, outlines the inherent limits of automated systems. They are not 

optimized for, nor are they good at taking relevant context into consideration when 

carrying out their functions. This is not a limitation of computing power; the problem 

is knowing what to look for. Using experts to pinpoint and map the relevant fac-

tors (Dawes, 1979) is not an adequate method of overcoming this limitation. While 

experts are good at understanding the domain and can often identify factors that 

would be relevant in most situations, they are notoriously bad at externalizing such 

information (Klein, 1998). Furthermore the only scenarios where these expert-defined 

factors seem exhaustive is against a list of other factors devised by some experiment-

er with a limited knowledge of the domain and who is conducting an experiment in 

the laboratory -- not in a natural setting. Even though domain specifics may be used, 

conducting an experiment in a lab is not the same as observing the same behavior as 

it naturally occurs (Klein, 1998).

The third theme points out another related myth about computers and humans; 

namely that computers are stakeholders. Similarly to how automated systems do not 

have their own goals; they also are not stakeholders. If a plane crashes into a moun-

tain, there are no families of robots mourning the loss of their beloved autopilot. Ma-

chines exist to help us humans, who are always the stakeholders in any system. This 

fact illustrates the inherent danger in creating automated systems which attempt to 

assume ever-increasing levels of control without assuming requisite levels of respon-



sibility. Humans will ultimately be the ones responsible, and in order to carry this out 

they need ultimate authority to act on their own behalf. The authority-responsibility 

double bind (Cook, 1994) plays out in many contexts, where humans in some situa-

tion are responsible for the outcome of a situation without having the necessary au-

thority. One such example is in aviation, where pilots must adhere to the Traffic and 

Collision Avoidance System (TCAS) warnings and directions from Air Traffic Control. 

When those directions interfere, the pilot can and usually will be faulted if something 

goes wrong. If the pilot adheres to the TCAS warning, he’s faulted for disobeying 

ATC, and vice versa of he adheres to the ATC directions. Alleviating this double bind 

requires the human to have complete command of the situation (Billings, 1991). Add-

ing automated systems that replace human operators do not replace the humans as 

stakeholders.

Some automated system designers and research labs strive to develop automates 

systems that take the place of humans. Usually the argument is that humans are 

unpredictable, fallible, and prone to error. Given this premise, it seems obvious that 

automated systems, which by contrast seem predictable, infallible and relatively im-

mune to error would do well to replace the human operators wherever possible. 

Additionally, the enormous power of today’s computers perpetuates this Sisyphian 

struggle. The idea that new technology can be a simple substitution for people is an 

oversimplification called the substitution myth (Woods and Dekker 2002). In reality, 

adding or expanding the role of automation changes the human’s role, it does not 

eliminate it (Sarter, Woods, & Billings, 1997). Because the human must still be in-

volved at some level–because they are the stakeholders and ultimately responsible for 

the consequences–adding automation only changes that role, often from operator to 

supervisor. For instance, introducing a robot that can weld does not get rid of the hu-

man. While the human welder might be gone, there is still someone needed to make 

sure the robotic welder is doing things correctly, and to shut it down if it malfunc-

tions. In order to do this effectively, this supervisor must understand how the robot 

works and the rules by which it operates. In the case of welding this might be very 

clear–either the robot welds correctly or it doesn’t, and the results are immediately 

observable–but in other situations, such as computer-controlled pressure regulation, 

effects of a poorly operating system may not be immediately apparent, or they may 

manifest in other systems which are working correctly. Providing effective support ne-

cessitates more training and, surprise–expertise! It then becomes clear why systems 

where there is “no knowledge needed” are usually a very bad sign. Not being able to 

observe the workings of a system does not remove the need for expertise, it only hin-

ders the ability of humans to effectively respond when things don’t go as expected.



Conclusion

The increase of technological devices and automated systems hold a fantastic prom-

ise for our future. However, this promise will not be realized through the systematic 

replacement of humans with machines. The power lies in augmenting human perfor-

mance through an integrated team of computers and humans. Humans are always 

the stakeholders and the ones who have goals. We are context-sensitive beings who 

have the power to innovate in novel situations. Machines represent exciting new 

ways we can work to achieve those goals, yet they are literal minded and cannot 

be expected to achieve those goals without us. Additionally, in order for the role of 

technology to support, rather than replace human endeavors, we must recognize that 

ultimate control must always rest with humans, who always have ultimate responsibil-

ity.
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